原发不明癌症是一组非常神秘的癌症诊断形式,即肿瘤起源的主要原发性位点并不能被确定,这对于科学家们而言是一项巨大的挑战,因为现代的治疗方法主要针对原发性肿瘤;最近的研究集中在使用基因组学和转录组学来识别肿瘤的起源;然而基因组的检测并不总是能奏效,而且在较低资源环境中缺乏一定的临床渗透性。
为了改善复杂转移性癌症患者的诊断,科学家们通过研究开发出了一种人工 智能系统,其能利用常规获得的组织学切片来准确寻找转移性肿瘤的起源,同时还能产生一种“鉴别诊断”策略,用于对原发性不明癌症患者进行诊断。
这项研究中,研究人员开发的人工 智能系统就能够帮助改善复杂转移性癌症患者的诊断,尤其是在低水平资源的地区;其能利用常规获得的组织切片来寻找转移性肿瘤的起源,同时还能针对原发不明原因的癌症患者产生一种鉴别诊断策略。
文章通讯作者指出,几乎每一名接受癌症诊断的患者都会有一张组织学切片,这在一百多年来一直是诊断的标准,本文研究就为科学家们提供了一种方法来利用普遍获得的数据和人工 智能的强大力量,帮助改善这些通常需要大量诊断工作的复杂癌症病例的诊断。
研究人员所开发的这种基于深度学习的算法被称之为TOAD 算法能同时识别肿瘤到底是原发性的还是转移性的,还能预测其起源的位点。研究人员利用来自超过2.2万名癌症病例的肿瘤千兆像素病例学全切片来训练这种模型,随后在大约6500个已知的原发病例中检测TOAD算法,并分析越来越复杂的转移性癌症病例,以此来建立针对原发不明癌症的人工 智能模型。
对于已知原发性起源的肿瘤而言,该模型能准确地在83%的时间里正确识别癌症,并在96%的时间里将诊断列入前三名的预测结果中。随后研究人员在317例原发不明癌症病例中检测了该模型,并对病例进行了鉴别诊断,结果发现,TOAD诊断在61%的时间里与病理学家的报告一致,在82%的病例中与前三名预测结果一致。
TOAD算法或能作为一种辅助诊断工具来用于针对复杂的转移性肿瘤和原发不明癌症类型进行鉴别诊断,并能与辅助检查和广泛的诊断检查联合使用来减少原发不明癌症的发生率。
扩展阅读
您可能还会关注:
任何关于疾病的建议都不能替代执业医师的面对面诊断,请谨慎参阅。本站不承担由此引起的法律责任。
免责声明:本站上所有内容均出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。
一路同行
共享百龄
细胞知识
科普问答
免费咨询
方便快捷
免费咨询,获取干细胞治疗方案,祝您百龄!